Morchard Bishop C of E Primary School Mathematics Curriculum Statement EYFS-Year 6

Mathematics at Morchard Bishop C of E Primary School

Our core purpose is to equip all pupils with the skills and confidence to develop their mathematical fluency, problem solving and reasoning in preparation for assessment (including statutory testing), further education and life beyond.

Children are encouraged to develop curiosity about number and embrace the mathematics that surrounds them each day in a variety of contexts that have meaningful connections to real life, including links with other curriculum subjects. We offer opportunities for children to develop understanding and mathematical articulacy through a cohesive progression of learning across the school in order to maximise their depth of learning. Children should be able to demonstrate a deep conceptual understanding of an area of maths and build on this over time, as well as establishing a secure knowledge of key number facts to allow them to become efficient mathematicians.

Mathematics at The Link Academy Trust is an opportunity for pupils to take risks, challenge themselves and work both independently and collaboratively towards solving problems. Children will develop concise and accurate vocabulary in mathematics through consistent modelling by teachers and high expectations for the pupils.

Our 'learning powers' (resilience, resourcefulness, reciprocity and reflectiveness) are evident throughout mathematics in The Link Academy Trust. Alongside this, we promote growth mindset and ensure all children feel empowered to achieve. This supports our children to develop selfconfidence when faced with mathematical challenges, allowing them to embrace mistakes as part of the learning process and in turn value the importance of effort.

We strive to accelerate progress and improve outcomes for all of our pupils each year.

A mathematician at our school will

- become fluent in the fundamentals of mathematics, through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language.
- be able solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.
- be able to communicate, justify, argue and prove using mathematical vocabulary.
- be able to use maths in other subjects across the curriculum, behaving like mathematicians.
- develop their character, including resilience, confidence and independence, so that they contribute positively to the life of the school, their local community and the wider environment.

Vocabulary

Children's command and application of vocabulary is fundamental to their learning and progress across the whole curriculum. Teachers develop vocabulary actively and specifically, building systematically on children's current knowledge and deepening their understanding of etymology and morphology (word origins and structures) in order to increase pupils' store of words. Simultaneously, pupils should also make links between known and new vocabulary and apply the shades of meaning in similar words. In this way, they will expand and apply vocabulary choices that are available to them.

Maths specific vocabulary

Rich maths vocabulary is modelled and discussed by class teachers and pupils. The expectations are high for children to consistently use accurate, concise and age-appropriate mathematical vocabulary during discussions and written reasoning. By the time Year 6 pupils undertake SATs, children should have a clear understanding of KS1 and KS2 maths vocabulary to eliminate potential barriers to understanding questions. Teachers use regular questioning and activities around maths vocabulary to address misconceptions and dual meanings. The vocabulary for the current topic is displayed in the classroom, alongside examples of children's work, images, numbers and symbols for the children to refer to and to support their learning. The focus on 'maths talk' is evident with talk

Planning

Maths mastery is a core driver of our teaching and learning. This method is complemented by fluency, problem-solving and reasoning tasks adapted from a variety of other sources. Lessons planned in all year groups adopt a Concrete-PictorialAbstract (CPA) approach to engage and add depth of understanding for all learners. The planning ensures that all learners are challenged at an appropriate level and support is allocated accordingly. Depending on class structure, as mixed-age classes dictate, some year groups may receive separate lesson inputs by the Teacher and/or TA and some will share lesson inputs, but all will have differentiation incorporated into each lesson. Medium-term Rising Stars planning maps out curriculum coverage.

Lesson structure and class

management

The focus on 'maths talk' is evident with talk partners, talk trios or wholeclass discussions in response to frequent questioning throughout all maths lessons. Teachers will challenge understanding through regular, investigative questioning throughout, for example: How do you know? What method have you used? Can you prove it? Are you sure? What's the value? What's the same/different about? Can you explain that? What does your partner think? Can you show me another way? Maths pairs and trios are selected each week so children work with a range of other learners. Lessons typically begin with independent fluency tasks. This provides daily opportunities to recap core mathematical understanding and address misconceptions. A

Working walls and resources

Each class has a mathematics working wall to support learning in mathematics. It is a public display of the learning process which evolves as each day progresses to support children's independent work. Children know where maths resources are kept and are encouraged to independently use them to assist their own learning. A range of maths scaffolding resources are used by individuals identified as requiring them.
Children are all able to access MyMaths and MathShed as a means to improving their understanding and fluency.
partners, talk trios or whole-class discussions in response to frequent effective questioning throughout all maths lessons. By giving the children these opportunities expand on their thinking and share their reasoning, they will develop their conceptual understanding and make connections between number facts.

Self-editing \& feedback

Children will typically respond to feedback using a purple pen or verbally as part of a discussion. Pink marking pens are used to show that their work is correct, green shows that their work requires corrections (Perfect Pink and Growing Green)

KS2 pupils may mark work together to provide opportunities to discuss understanding and instant feedback to assist in gauging understanding. Lessons conclude with a 'review' question which is a five-minute discussion to reflect upon the learning of the lesson without written maths taking place

The use of manipulatives continues throughout the Primary curriculum to support learning new concepts as well as supporting children who are working below the age-related expectations.

Times tables

Regular, short times-tables activities take place in each class either during or before a maths lesson. All children from Year 1 upwards have access to MathShed, a web-based multiplication program which children can access both at home and school. All classes set table practice as part of home learning and KS2 classes have a weekly times table practice in their class. Year 4 pupils practice for their MTC on iPads a number of times each week and monitor progression on individual score sheets
recap' question then follows - this is the 'review' question from the previous lesson. The main body of the lesson will include concrete, pictorial and abstract forms of mathematical learning and opportunities to develop fluency, problem-solving and reasoning.

SEND, pre-teaching and mop-up maths

Some individuals are specifically supported by additional adults, resources or differentiated activities in maths. Learners who have not kept up with the rest of the class during the lesson also have an opportunity for 'Maths Intervention' sessions with their teacher or TA every week. Intervention for pupils working significantly below agerelated expectation is detailed in Class Provision Maps.

Calculation policy

This calculation policy is a guide for teaching the progression of calculation strategies throughout primary education at Morchard Bishop but does not consider any strategy to be specific for use only in particular year groups. An example of this is pupils using basic number lines in Year 6 to solve negative number problems or the basic use of visual and concrete representations of number across all year groups.

Assessment - in order to assess impact

Children will develop 'maths capital' - confidence, understanding and enjoyment in mathematics along with a comprehensive set of problem-solving skills and strategies to take with them to the next stage of their education. They will be engaged, resilient, challenged and able to quickly recall facts and techniques in order to maximise their depth of learning.

They will use mathematics effectively as a tool in a wide variety of situations and will be able to present a justification or argument relating to a problem using mathematical language. They will understand the relevance of what they are learning in relation to real world concepts and develop a sense of curiosity about the subject.

Our children will develop confident recall of multiplication tables to 12×12 by the end of year 4 and our attainment data will exceed national.
Morchard Bishop uses NFER termly assessments to monitor progress, as well as areas that need re-teaching.

Assessment evidence - a guide

EYFS	KS1	Years 3-5	Year 6
Observations of maths behaviour including through Maths Mastery, Tapestry and White Rose?	Statutory tests for Year 2 (SATs)	Non-statutory evidence gathering grids for moderation (Babcock)	Statutory tests for Year 6 (SATs)
	SIMs - in-house data and progress tracking	SIMs - in-house data and progress tracking	SIMs - in-house data and progress tracking
Maths books/evidence Ongoing observations and	Teacher assessment observations of maths behaviour and discussion	Teacher assessment observations of maths behaviour and discussion	Teacher assessment observations of maths behaviour and discussion
Ongoing observations and assessments	Maths book	Maths books	Maths books
	NFER Assessments	N	NFER Assessments
	Elicitation tasks	With	Written responses to activities
	Written responses to activities across the curriculum.	Written responses to activities across the curriculum.	

Progressive curriculum plan

Number and place value/ Counting

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6

count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number			count backwards through zero to include negative numbers	interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero	use negative numbers in context, and calculate intervals across zero
count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward	count from 0 in multiples of 4, 8,50 and 100 ;	count in multiples of 6, 7, 9, 25 and 1000	count forwards or backwards in steps of powers of 10 for any given number up to 1000000	
given a number, identify one more and one less		find 10 or 100 more or less than a given number	find 1000 more or less than a given number		
Comparing numbers					
use the language of: equal to, more than, less than (fewer), most, least	compare and order numbers from 0 up to 100; use <, > and $=$ signs	compare and order numbers up to 1000	order and compare numbers beyond 1000 compare numbers with the same number of decimal places up to two decimal places (copied from Fractions)	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Reading and Writing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)
Identifying, representing and estimating numbers					
identify and represent numbers using objects and pictorial representations including the number line	identify, represent and estimate numbers using different representations, including the number line	identify, represent and estimate numbers using different representations	identify, represent and estimate numbers using different representations		
Reading and writing numbers (including Roman numerals)					
read and write numbers from 1 to 20 in numerals and words.	read and write numbers to at least 100 in numerals and in words	read and write numbers up to 1000 in numerals and in words		read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Comparing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Understanding Place Value)

	tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks (copied from Measurement)	read Roman numerals to 100 (। to C) and know that over time, the numeral system changed to include the concept of zero and place value.	read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	
Understanding place value				
recognise the place value of each digit in a two-digit number (tens, ones)	recognise the place value of each digit in a three-digit number (hundreds, tens, ones)	recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Reading and Writing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)
		find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as units, tenths and hundredths (copied from Fractions)	recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (copied from Fractions)	identify the value of each digit to three decimal places and multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places (copied from Fractions)
Rounding				
		round any number to the nearest 10,100 or 1000	round any number up to 1000 000 to the nearest $10,100,1$ 000,10000 and 100000	round any whole number to a required degree of accuracy
		round decimals with one decimal place to the nearest whole number (copied from Fractions)	round decimals with two decimal places to the nearest whole number and to one decimal place (copied from Fractions)	solve problems which require answers to be rounded to specified degrees of accuracy (copied from Fractions)
Problem solving				
use place value and number facts to solve problems	solve number problems and practical problems involving these ideas.	solve number and practical problems that involve all of the	solve number problems and practical problems that involve all of the above	solve number and practical problems that involve all of the above

			above and with increasingly large positive numbers		
Addition and subtraction					
Number bonds					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
represent and use number bonds and related subtraction facts within 20	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100				
Addition and subtraction Mental calculation					
add and subtract one-digit and two-digit numbers to 20 , including zero	add and subtract numbers using concrete objects, pictorial representations, and mentally, including: 1. a two-digit number and ones 2. a two-digit number and tens 3. two two-digit numbers 4. adding three onedigit numbers	add and subtract numbers mentally, including: 5. a three-digit number and ones 6. a three-digit number and tens 7. a three-digit number and hundreds		add and subtract numbers mentally with increasingly large numbers	perform mental calculations, including with mixed operations and large numbers

read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Written Methods)	show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot				use their knowledge of the order of operations to carry out calculations involving the four operations
Written methods					
read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation)		add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)	
Inverse operations, estimating and checking answers					
	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	estimate the answer to a calculation and use inverse operations to check answers	estimate and use inverse operations to check answers to a calculation	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
Problem solving					
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=*-9$	solve problems with addition and subtraction: 8. using concrete objects and pictorial representations, including those involving numbers, quantities and measures 9. applying their increasing knowledge of mental and written methods	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why Solve problems involving addition, subtraction, multiplication and division

Multiplication and division facts

Year 1	Year 2	Year 3	Year 4	Year 6	
count in multiples of twos, fives and tens (copied from Number and Place Value)	count in steps of 2, 3, and 5 from 0, and in tens from any number, forward or backward (copied from Number and Place Value)	count from O in multiples of 4, 8,50 and 100 (copied from Number and Place Value)	count in multiples of 6, 7, 9, 25 and 1000 (copied from Number and Place Value)	count forwards or backwards in steps of powers of 10 for any given number up to 1000 000 (copied from Number and Place Value)	
	recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers	recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables	recall multiplication and division facts for multiplication tables up to 12×12		

Mental calculation

		write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one- digit numbers, using mental and progressing to formal written methods (appears also in Written Methods)	use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers	multiply and divide numbers mentally drawing upon known facts	
	perform mental calculations, including with mixed operations and large numbers				
	show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot	recognise and use factor pairs and commutativity in mental calculations (appears also in Properties of Numbers)	multiply and divide whole numbers and those involving decimals by 10, 100 and 1000	associate a fraction with division and calculate decimal fraction equivalents (e.g. O.375) for a simple fraction (e.g. $3 / 8$) (copied from Fractions)	Written calculation

	calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods (appears also in Mental Methods)	multiply two-digit and threedigit numbers by a one-digit number using formal written layout	multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers	multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
				divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context	divide numbers up to 4-digits by a two-digit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
					use written division methods in cases where the answer has up to two decimal places (copied from Fractions)
Properties of numbers: multiples, factors, primes, square and cube numbers					
			recognise and use factor pairs and commutativity in mental calculations (repeated)	identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers establish whether a number up to 100 is prime and recall prime numbers up to 19	identify common factors, common multiples and prime numbers use common factors to simplify fractions; use common multiples to express fractions in the same denomination (copied from Fractions)

Inverse operations, estimating and checking answers

		estimate the answer to a calculation and use inverse operations to check answers (copied from Addition and Subtraction)	estimate and use inverse operations to check answers to a calculation (copied from Addition and Subtraction)		use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy

Problem solving

solve one-step problems

 involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teachersolve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts
solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects
solve problems involving multiplying and adding including using the distributive law to multiply two-digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects

solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes	solve problems involving addition, subtraction, multiplication and division
solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	

				solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	solve problems involving similar shapes where the scale factor is known or can be found (copied from Ratio and Proportion)
Fractions, decimals and percentages					
Counting in fractional steps					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Pupils should count in fractions up to 10, starting from any number and using the1/2 and 2/4 equivalence on the number line (Non Statutory Guidance)	count up and down in tenths	count up and down in hundredths		
Recognising fractions					
recognise, find and name a half as one of two equal parts of an object, shape or quantity recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity	recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators recognise that tenths arise from dividing an object into 10 equal parts and in dividing one - digit numbers or quantities by 10 . recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators	recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten	recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (appears also in Equivalence)	
Comparing fractions					

	compare and order unit fractions, and fractions with the same denominators		compare and order fractions whose denominators are all multiples of the same number	compare and order fractions, including fractions >1
Comparing decimals				
		compare numbers with the same number of decimal places up to two decimal places	read, write, order and compare numbers with up to three decimal places	identify the value of each digit in numbers given to three decimal places
Rounding including decimals				
		round decimals with one decimal place to the nearest whole number	round decimals with two decimal places to the nearest whole number and to one decimal place	solve problems which require answers to be rounded to specified degrees of accuracy
Equivalence				
write simple fractions e.g. $1 / 2$ of $6=3$ and recognise the equivalence of $2 / 4$ and $1 / 2$.	recognise and show, using diagrams, equivalent fractions with small denominators	recognise and show, using diagrams, families of common equivalent fractions	identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths	use common factors to simplify fractions; use common multiples to express fractions in the same denomination
		recognise and write decimal equivalents of any number of tenths or hundredths	read and write decimal numbers as fractions (e.g. 0.71 $=71 / 100)$ recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents	associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. $3 / 8$)
		recognise and write decimal equivalents to $1 / 4 ; 1 / 2 ; 3 / 4$	recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100 as a decimal fraction	recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.

Addition and subtraction of fractions

| | | add and subtract fractions with
 the same denominator within
 one whole (e.g. $5 / 7+1 / 7=6 / 7)$ | add and subtract fractions with
 the same denominator | add and subtract fractions with
 the same denominator and
 multiples of the same number |
| :--- | :--- | :--- | :--- | :--- | :--- |
| recognise mixed numbers and
 improper fractions and convert
 from one form to the other and
 write mathematical statements
 >1 as a mixed number (e.g. $2 / 5$
 $+4 / 5=6 / 5=11 / 5)$ | | | | |

add and subtract fractions with
different denominators and
mixed numbers, using the
concept of equivalent fractions

Multiplication and division of fractions

$\left.\begin{array}{|l|l|l|l|l|l|}\hline & & & & \begin{array}{l}\text { and } 1000 \text { where the answers are } \\ \text { up to three decimal places }\end{array} \\ \hline & & & & \begin{array}{l}\text { associate a fraction with division } \\ \text { and calculate decimal fraction } \\ \text { equivalents (e.g. } 0.375) ~ f o r ~ a ~\end{array} \\ \text { simple fraction (e.g. } 3 / 8)\end{array}\right]$

Problem solving

		solve problems that involve all of the above	solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number	solve problems involving numbers up to three decimal places	
			solve simple measure and money problems involving fractions and decimals to two decimal places.	solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those with a denominator of a multiple of 10 or 25 .	

Ratio and proportion

| | | | | Year 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | solve problems involving the
 relative sizes of two quantities
 where missing values can be |

					found by using integer multiplication and division facts
				solve problems involving the calculation of percentages [for example 15% of 360 and the use of percentages for comparison	
				solve problems involving similar shapes where the scale factor is known or can be found	
				solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.	

Algebra

Equations

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$ * - 9 (copied from Addition and Subtraction)	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. (copied from Addition and Subtraction)	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction. (copied from Addition and Subtraction) solve problems, including missing number problems, involving multiplication and division, including integer scaling (copied from Multiplication and Division)		use the properties of rectangles to deduce related facts and find missing lengths and angles (copied from Geometry: Properties of Shapes)	express missing number problems algebraically

Measurement

Comparing and estimating

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6

compare, describe and solve practical problems for: 1. lengths and heights [e.g. long/short, longer/shorter, tall/short, double/half] 2. mass/weight [e.g. heavy/light, heavier than, lighter than] 3. capacity and volume [e.g. full/empty, more than, less than, half, half full, quarter] 4. time [e.g. quicker, slower, earlier, later]	compare and order lengths, mass, volume/capacity and record the results using >, < and =		estimate, compare and calculate different measures, including money in pounds and pence (also included in Measuring)	calculate and compare the area of squares and rectangles including using standard units, square centimetres (cm^{2}) and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes (also included in measuring) estimate volume (e.g. using 1 cm^{3} blocks to build cubes and cuboids) and capacity (e.g. using water)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm^{3}) and cubic metres (m^{3}), and extending to other units such as mm^{3} and km^{3}.
sequence events in chronological order using language [e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]	compare and sequence intervals of time	compare durations of events, for example to calculate the time taken by particular events or tasks			
		estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Telling the Time)			
Measuring and calculating					

Telling the time

tell the time to the hour and half past the hour and draw the hands on a clock face to show these times.	tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times.	tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks	read, write and convert time between analogue and digital 12 and 24 -hour clocks (appears also in Converting)		
recognise and use language relating to dates, including days of the week, weeks, months and years	know the number of minutes in an hour and the number of hours in a day. (appears also in Converting)	estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Comparing and Estimating)			
			solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days (appears also in Converting)	solve problems involving converting between units of time	
Converting					
	know the number of minutes in an hour and the number of hours in a day. (appears also in Telling the Time)	know the number of seconds in a minute and the number of days in each month, year and leap year	convert between different units of measure (e.g. kilometre to metre; hour to minute)	convert between different units of metric measure (e.g. kilometre and metre; centimetre and metre; centimetre and millimetre;	use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa,

Geometry: Properties of shape

Identifying shapes and their properties

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Recognise and name common 2D and 3-D shapes, including: 5. 2-D shapes [e.g. rectangles (including squares), circles and triangles] 6. 3-D shapes [e.g. cuboids (including cubes), pyramids and spheres].	identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line		identify lines of symmetry in 2D shapes presented in different orientations	identify 3-D shapes, including cubes and other cuboids, from 2D representations	recognise, describe and build simple 3-D shapes, including making nets (appears also in Drawing and Constructing)
	identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces				illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius

identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]

Drawing and constructing

	draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them	complete a simple symmetric figure with respect to a specific line of symmetry	draw given angles, and measure them in degrees $\left({ }^{\circ}\right)$	draw 2-D shapes using given dimensions and angles recognise, describe and build simple 3-D shapes, including making nets (appears also in Identifying Shapes and Their Properties)
Comparing and classifying				
compare and sort common 2D and 3-D shapes and everyday objects		compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes	use the properties of rectangles to deduce related facts and find missing lengths and angles distinguish between regular and irregular polygons based on reasoning about equal sides and angles	compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons
Angles				
	recognise angles as a property of shape or a description of a turn		know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles	
	identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle	identify acute and obtuse angles and compare and order angles up to two right angles by size	identify: 1. angles at a point and one whole turn (total 360°) 2. angles at a point on a straight line and $1 / 2$ a turn (total 180°)	recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles

				other multiples of 90°	
			identify horizontal and vertical lines and pairs of perpendicular and parallel lines		

Geometry: Position and direction					
Position, direction and movement					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
describe position, direction and movement, including half, quarter and three-quarter turns.	use mathematical vocabulary to describe position, direction and movement including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise)		describe positions on a 2-D grid as coordinates in the first quadrant describe movements between positions as translations of a given unit to the left/right and up/down	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	describe positions on the full coordinate grid (all four quadrants) draw and translate simple shapes on the coordinate plane, and reflect them in the axes.
			plot specified points and draw sides to complete a given polygon		
Pattern					
	order and arrange combinations of mathematical objects in patterns and sequences				

Statistics

Interpreting, constructing and presenting data

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	interpret and construct simple pictograms, tally charts, block diagrams and simple tables	interpret and present data using bar charts, pictograms and tables	interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	complete, read and interpret information in tables, including timetables	interpret and construct pie charts and line graphs and use these to solve problems
	ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity				
	ask and answer questions about totalling and comparing categorical data				

Solving problems

\(\left.$$
\begin{array}{|l|l|l|l|l|l|l|l}\hline & & \begin{array}{l}\text { solve one-step and two-step } \\
\text { questions [e.g. 'How many } \\
\text { more?' and 'How many } \\
\text { fewer?'] using information } \\
\text { presented in scaled bar charts } \\
\text { and pictograms and tables. }\end{array} & \begin{array}{l}\text { solve comparison, sum and } \\
\text { difference problems using } \\
\text { information presented in bar } \\
\text { charts, pictograms, tables and } \\
\text { other graphs. }\end{array} & \begin{array}{l}\text { solve comparison, sum and } \\
\text { difference problems using } \\
\text { information presented in a line } \\
\text { graph }\end{array}
$$

mean as an average\end{array}\right]\)| |
| :--- |

